Genetic regulation of volatile production in two melon introgression line collections with contrasting ripening behavior

Hortic Res. 2024 Jan 16;11(3):uhae020. doi: 10.1093/hr/uhae020. eCollection 2024 Mar.

ABSTRACT

The importance of melon aroma in determining fruit quality has been highlighted in recent years. The fruit volatile profile is influenced by the type of fruit ripening. Non-climacteric fruits contain predominantly aldehydes, while climacteric fruits mainly produce esters. Several genes have been described to participate in volatile organic compounds (VOCs) biosynthesis pathways, but knowledge in this area is still incomplete. In this work we analysed the volatile profile of two reciprocal Introgression Line (IL) collections generated from a cross between ‘Piel de Sapo’ (PS) and ‘VĂ©drantais’ (VED) melons, differing in their aroma profile and ripening behaviour. SPME GC-MS was performed to identify genes responsible for VOCs formation. More than 1000 QTLs for many volatiles were detected taken together both populations. Introgressions on chromosomes 3, 5, 6, 7 and 8 modified ester-aldehyde balance and were correlated to ripening changes in both genetic backgrounds. Some previously identified QTLs for fruit ripening might be involved in these phenotypes, such as ETHQV8.1 on chromosome 8 and ETHQV6.3 on chromosome 6. PS alleles on chromosomes 2, 6, 10 and 11 were found to increase ester content when introgressed in VED melons. Terpenes showed to be affected by several genomic regions not related to ripening. In addition, several candidate genes have been hypothesized to be responsible for some of the QTLs detected. The analysis of volatile compounds in two reciprocal IL collections has increased our understanding of the relationship between ripening and aroma and offers valuable plant material to improve food quality in melon breeding programs.

PMID:38469382 | PMC:PMC10925849 | DOI:10.1093/hr/uhae020