Seasonal and height dynamics of volatile organic compounds in rubber plantation: Impacts on ozone and secondary organic aerosol formation

By

Sci Total Environ. 2024 Jun 17:173984. doi: 10.1016/j.scitotenv.2024.173984. Online ahead of print.

ABSTRACT

Rubber trees emit a range of volatile organic compounds (VOCs), including isoprene, monoterpenes, and sesquiterpenes, as part of their natural metabolism. These VOCs can significantly influence air quality through photochemical reactions that produce ozone and secondary organic aerosols (SOAs). This study examines the impact of VOCs detected in a rubber tree plantation in Northeastern Thailand on air quality, highlighting their role in atmospheric reactions that lead to the formation of ozone and SOAs. VOCs were collected at varying heights and seasons using Tenax-TA tubes paired with an atmospheric sampler pump and identified by gas chromatography-mass spectrometry. In total, 100 VOCs were identified, including alkanes, alkenes, terpenes, aromatics, and oxygenated VOCs. Principal Coordinate Analysis (PCoA) revealed distinct seasonal VOC profiles, with hydrocarbons, peaking in summer and terpenes in the rainy season. The Linear Mixed-Effects (LME) model indicates that VOC concentrations are more influenced by seasonal changes than by sampling heights. Secondary organic aerosol potential (SOAP) and ozone formation potential (OFP) of selected VOC species were also determined. The total SOAP ranged from 67.24 μg/m3 in summer to 17.87 μg/m3 in winter, while the total OFP ranged from 377.87 μg/m3 in summer to 139.39 μg/m3 in winter. Additionally, positive matrix factorization (PMF) analysis identified four main VOC sources: gasoline combustion (18.3 %), microbial activity (38.6 %), monoterpene emissions during latex production (15.0 %), and industrial sources (28.1 %). These findings provide essential information for managing air pollution in rubber tree plantations. By adopting focused air quality management strategies, plantation operators can mitigate the adverse effects of VOCs, promoting a healthier and more sustainable future.

PMID:38897456 | DOI:10.1016/j.scitotenv.2024.173984