N-phenyl pyrazoline derivative inhibits cell aggressiveness and enhances paclitaxel sensitivity of triple negative breast cancer cells


Sci Rep. 2024 Jun 8;14(1):13200. doi: 10.1038/s41598-024-63778-2.


Protein kinase dysregulation induces cancer cell aggressiveness leading to rapid tumor progression and poor prognosis in TNBC patients. Many small-molecule kinase inhibitors have been tested in clinical trials to treat TNBC patients. In the previous study, we found that N-phenylpyrazoline small molecule acts as a protein kinase inhibitor in cervical cancer cells. However, there remains unknown about N-phenyl pyrazoline potency as a kinase inhibitor and its anti-cancer activity in TNBC cells. In this study, we investigated the activity of N-phenyl pyrazoline against TNBC cells via tyrosine kinase inhibition. Based on the MTT assay, the IC50 values for the N-phenyl pyrazoline 2, 5, A, B, C, and D against Hs578T were 12.63 µM, 3.95 µM, not available, 18.62 µM, 30.13 µM, and 26.79 µM, respectively. While only P5 exhibited the IC50 against MDA MB 231 (21.55 µM). Further, N-phenyl pyrazoline 5 treatment significantly inhibited the cell proliferation rate of Hs578T and MDA MB 231 cells. The migration assay showed that treatment with the compound N-phenyl pyrazoline 5 with 4 µM concentration significantly reduced cell migration of Hs578T cells. N-phenyl pyrazoline 5 treatment at 1 µM and 2 µM was able to reduce the tumorsphere size of Hs578t cells. A combination treatment of P5 and paclitaxel showed a synergistic effect with a combination index score > 1 in both TNBC cells. Further, the P5 predictively targeted the protein kinases that significantly correlated to breast cancer prognosis. The GSEA analysis result shows that receptor tyrosine kinase, Notch3, Notch4, and Ephrin signaling pathways were targeted by P5. The P5 treatment reduced the EGFR expression level and activation in TNBC cells.

PMID:38851778 | DOI:10.1038/s41598-024-63778-2